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Roxburgh, Michelle Irene (M.E., Space Operations) 

Ground Based Intercept of a Ballistic Missile: Battle 

Management 

Creative investigation directed by Dr. Don Caughlin 

This creative investigation is based on work completed 

for ASE 583, Engineering Simulation.  As a group project, the 

class designed and simulated a ballistic missile intercept 

system.  This particular paper covers the battle management 

aspects of this simulation.  Specifically, it addresses issues 

of infrared data processing, launch message timing, initial 

track generation, and track updating. 
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I. INTRODUCTION 

This paper is based on a group simulation project 

completed for ASE 583, Engineering Simulation.  The class 

designed and simulated a ballistic missile intercept system; 

technical issues associated with the detection, acquisition, 

and hit of an incoming missile were primary concerns. 

Specific components modeled in this simulation include space- 

based sensors, ground based radars, battle management, the 

interceptor missile, and the global positioning system (GPS). 

This particular paper covers the battle management aspects of 

the simulation.  The four main topics of discussion will 

include infrared data processing, launch message timing, 

initial track generation, and track updating. 

II. BACKGROUND 

Battle management is the capability for a designated 

operational commander to plan, coordinate, direct, and control 

weapons and sensors.  Battle management technology includes 

the development of tool sets that assist in planning, 

reasoning, and decision-making, given uncertainty and 

incomplete information.  The Ballistic Missile Defense 

Organization (BMDO) groups battle management with command, 

control, and communications in its Ballistic Missile Defense 

(BMD) Program; it is commonly referred to as BM/C3.  BM/C3 has 

been identified by BMDO as one of the most difficult issues 



associated with missile defense systems.  Unlike other 

elements, BM/C3 is a software development problem rather than 

a hardware development problem.  The primary software 

challenge is making use of apriori, inferred, and most likely 

information to make correct decisions for a given situation 

based on known information.  Development of collaborative 

software tools connecting geographically distributed staff in 

near real-time fashion is a secondary issue.  Other challenges 

for BM/C3 include keeping the system adaptable so that all 

imaginable situations are included and so that new 

capabilities provided by the rapidly evolving 

telecommunications structure may be used.  Human-system 

interface is also an issue.  In light of these technical 

problem areas, BMDO is conducting numerous exercises and war 

games to validate its BM/C3 concepts.  These concepts continue 

to evolve through each iteration of testing1. 

In the ASE 583 simulation, battle management takes on a 

much more limited scope than the above BM/C3 description. 

Only selected behaviors are modeled due to the complexity of 

the problem.  Behaviors were chosen based on preliminary 

guidance provided by a requirements list and based on the 

overall necessity of the behavior in the simulation.  With 

this in mind, certain behaviors were selected; the 

responsibilities of the Battle Manager were determined to 



include infrared data processing, interceptor missile launch 

timing, initial track determination of the target missile, and 

relay of track target updates to the interceptor missile.  The 

Battle Manager is a central location of .data and information 

distribution; as a result, data flow is of utmost importance. 

The following diagram shows the data flow to and from the 

Battle Manager: 

Angles 

Track 

Location Look Angles 

Figure 1 - Data Flow Diagram 

The infrared sensors send data to the Battle Manager, 

which is then processed and sent to the search radar.  Next, 

the track radar sends data to the Battle Manager, which is 

processed into an initial track or an updated track, depending 

on the number of radar observations.  The initial track or 

updated track is then sent to the interceptor missile.  The 

launch message is sent to the interceptor at the appropriate 

time. 



The remainder of this paper is dedicated to the modeled 

behaviors and is divided into four sections: 

1. IR Data Processing 

2. Launch Message Timing 

3. Initial Track Generation 

4. Track Updates 

Each section discusses requirements, inputs and outputs, 

algorithms, and assumptions. 



III. IR DATA PROCESSING 

The infrared sensors send data to the Battle Manager once 

a launch is detected.  Information must then be conveyed to 

the search radar so that ground based radar systems can track 

the target missile.  Because the infrared data is incompatible 

with radar architecture, the Battle Manager must process it 

into a usable form. 

Infrared data processing depends primarily on the type of 

data provided by the infrared sensors.  Originally, the plan 

was to include only one space-based infrared sensor in the 

simulation.  Because one sensor alone cannot determine the 

altitude of the target missile, altitude would be assumed or 

modeled based on the type of missile.  Calculations showed, 

however, that for a missile ranging between 0 and 1000 

kilometers, latitude and longitude calculations could be 

several degrees off if invalid assumptions were made.  This 

was unacceptable for the system.  It was then determined that 

two infrared sensors at separate locations would provide a 

better solution.  Two separate infrared sensors allow the 

position of the target missile to be determined through vector 

geometry.  Azimuth and elevation for the search radar can then 

be calculated from the position vector. 

Both infrared sensors are aboard geostationary 

satellites, which means their position is always known.  Using 



Figure 2, it is obvious that the position of the target 

missile (RICBM) can be found with simple vector addition. 

Range Vector 

Figure 2 - Vector Geometery 

Finding the range vector is the complex part of the 

process.  This is why two infrared sensors at different 

locations are needed.  Each sensor provides a nadir angle (r|) 

and a rotation angle (G) to the Battle Manager, as shown by 

Figure 3. 

X 

Figure  3  - Nadir and Rotation Angle  Diagram 

The nadir  angle  is  the  angle between  the  origin and the 

target  missile   (point A)   from the  geostationary  satellite;   the 



rotation angle is the angle between the X axis and target 

missile, going clockwise. 

The nadir and rotation angles from the infrared sensors 

can be used to calculate line of sight vectors from each 

satellite to the target missile; these are calculated in a 

North-East-Down (NED) coordinate frame with each satellite at 

the origin of its own frame.  The line of sight vectors are 

unit vectors of the range vectors, and as a result, the range 

magnitude must be determined to find the components of the 

range vector.  From the Figure 4, it is easy to see that the 

two triangles of satellites 1 and 2 share a common side, RICBM. 

Range Vector 1 

Range Vector 2 

Figure  4  - Two Satellite Vector Geometry 

Using  this   geometry,   Rsati plus  Range  Vector  1   can be   set 

equal  to  RSat2 plus  Range  Vector  2. 

^+^1 = ^ + ^12 



Where Ri is the magnitude of Range Vector 1 

R2 is the magnitude of Range Vector 2 

Li is the line of sight vector 1 

L2 is the line of sight vector 2 

Then, either range magnitude can be solved for and 

substituted into the respective equation side to calculate 

RICBM-  The final outputs of the process are an azimuth and 

elevation angle for the search radar site.  The process as a 

whole is outlined in greater detail in the steps below: 

Step 1: Calculate the line of sight vector from each infrared 

sensor to the target missile.  This is done using the nadir 

(t|) and rotation (6) angles provided by the infrared sensors. 

L = 

SIN(r})* SIN(0)' 

SIN(TJ)*COS(0) 

COS(TJ) 

This line of sight vector is in a NED frame, which is useful 

for the given infrared data. 

Step 2: By rearranging the geometry equation derived from 

Figure 4, R2 can be calculated.  The second satellite must be 

rotated into the first's NED frame, which is taken into 

account in the equation for R2.  As a note, the equation for R2 

is formulated especially for geostationary satellites. 



R^+RLl=R,i + RiL2 \rart T -*M' sat! T iv2J 

R*    -L2Q)*Ll(2) 
Ll(l) 

SIN(-AA)* Sat! 

+12(2) * COS(-AA) + £2(3) * SDV(-AA) 

Where A, is the IR sensor's longitude 

AA is equal to A2 - A4 

Sat2 is the radius a geostationary satellite 

Step 3: Calculate RICBM in the NED frame. 

RICBM(NED) = [RSat2] + R2*L2 

Step 4: Rotate RICBM into the IJK frame. 

RICBM(IJK) = ROT3(-AA)ROT2 (90°) RICBM (NED) 

Step 5: Calculate azimuth and elevation. 

1.  Calculate the position vector of the site in ECI 

coordinates, assuming a non-rotating and spherical earth. 

siteUK 

(REarth + h)Cos(<f>gc)Cos(.AE) 

(REart+hycosy„)&»&,) 

(REarth + h)Sin(0gc) 

Where REarth is  the  radius  of  the  earth 

Pgc is the geocentric latitude of the radar site 

A is the longitude of the site (east is positive) 

h is the altitude of the site 
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2. Calculate the range vector from the radar site to the 

target missile in UK coordinates. 

PIJK = RICBM - Rsite 

3. Rotate the above range vector into SEZ coordinates. 

PSEZ = ROT2 ( 90°-<|)gc) ROT3 (XE) PIJK 

4. Calculate azimuth and elevation. 

-i AZ = TAN- 

EL = SIN'1 

PsEzi2) 

~ PSEZQ) 

(PSEZQ^ 

PSEZ 

This process is coded in Matlab and is attached as 

Appendix A.  The original code was completed in Fortran before 

transferring to the more user-friendly Matlab, which is 

compatible with the simulation software, Simulink and 

StateFlow. 

Because there is only one radar site, azimuth and 

elevation were chosen as outputs for simplicity.  Although 

less robust than outputting the position vector of the target, 

it consolidates the processing at the Battle Manager and lets 

the Radar Engineer concentrate on the radar system itself. 

The infrared data processing, as well as the three issues 

yet to be discussed, are based two main assumptions: a non- 

rotating earth and a spherical earth.  The non-rotating earth 
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assumption is valid because the earth rotates once every 

twenty-four hours and the simulation takes place in 

approximately thirty minutes, which means the earth will have 

completed a little over 2% of a rotation.  Using this 

assumption simplifies calculations of Local Sidereal Time 

(LST).  LST is the addition of Greenwich Sidereal Time (GST) 

and radar site longitude; because of the non-rotating earth 

assumption, GST is constant and chosen to be zero, which means 

LST is simply radar site longitude.  This makes the problem 

easier in that LST is constant.  The substitution of site 

longitude for LST has already been made in the above 

algorithm. 

The second assumption is that of a spherical earth.  In 

reality, the earth is not a perfect sphere.  It is flattened 

at the poles, and gravitational perturbations differ at 

different locations around the earth.  Geodetic latitude is 

normally used; for spherical earth calculations, however, 

geocentric latitude is used.  Geocentric latitude (cpgc) is the 

angle measured at the Earth's center from the plane of the 

equator to the point of interest; geodetic latitude (cpgd) is 

the angle between the equatorial plane and the normal to the 

surface of the ellipsoid.  This angle difference can cause 

discrepancies of up to several kilometers at high latitudes. 

Because all other simulation systems are assuming a spherical 
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earth, this assumption works.  If needed, an oblate earth 

could be modeled in the Battle Manager portion of the 

simulation by simply replacing the spherical site vector 

function with an oblate site vector function. 

It is understood that these assumptions make the 

simulation unrealistic.  Their resulting simplicity, however, 

allow for a working simulation in a shorter amount of time. 

Because simulations typically take longer than planned, this 

is key.  If time allows or further study is needed, these 

assumptions will be the first to be taken out. 

Validation is a key issue in modeling behaviors.  It is 

important to know that a process is producing expected results 

before it is used in a simulation.  The IR data processing 

code went through several steps of validation.  First, it was 

verified by inputting test data from the infrared sensors and 

then using previously coded functions to convert the outputted 

azimuth and elevation back into a position vector for the 

target missile.  This position vector was then checked with 

the initial truth position vector for accuracy.  Second, many 

numbers were inputted to the code as sanity checks.  For 

example, if the target missile was directly over the radar 

station, elevation should be 90° and azimuth should be 0°; 

these expected results were verified with the computer code. 

Finally, even after the code was validated as an individual 



13 

entity, it had to be validated as a part of Simulink for the 

simulation.  Because Matlab functions in Simulink accept only 

one vector as input and one vector as output, the code had to 

be tested yet again to check if the right inputs were being 

sent in the right order.  This was accomplished using a test 

module in Simulink, inputting known numbers, and checking the 

output with previously calculated numbers. 
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IV. LAUNCH MESSAGE TIMING 

The Battle Manager is responsible for the launch of the 

interceptor missile, which means the Battle Manager must send 

a launch message to the interceptor missile at a specified 

time.  The time must allow the kill vehicle to intercept the 

target exoatmospherically.  The interceptor directs itself 

toward the target missile using the target's current state; 

therefore, the launch message must be sent when the target 

missile is above the horizon relative to the interceptor 

launch site. 

There are many ways the launch message timing could have 

been approached.  An intercept point could have been chosen 

beforehand to meet this particular scenario's requirements; a 

launch window could have been determined given the range 

constraints of the interceptor and the exoatmospheric 

intercept requirement; or the interceptor missile could have 

been sent the launch message immediately after the initial 

track was acquired.  Initially, the plan was to launch 

immediately after the initial track was acquired.  This 

option, however, turned out to be unacceptable due to the kill 

vehicle controls.  Because the interceptor directs itself 

toward the current position of the target missile, positions 

that are below the horizon relative to the kill vehicle cause 

it to fly through the earth and thus crash.  When the initial 
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track is acquired, the target missile is well below the 

horizon relative to the interceptor.  As a result, the launch 

message will be sent to the kill vehicle under the condition 

that the elevation angle relative to the interceptor launch 

site is greater than or equal to zero. 

The algorithm for determining the elevation angle at the 

launch site is almost exactly the same as Step 5 of IR Data 

Processing.  The only difference is that launch site data, 

including latitude, longitude, and altitude, is used instead 

of radar site data.  Input includes the position and velocity 

vector of the target missile, and the only output value is 

elevation.  The velocity vector is not needed in the 

calculation; however, it is easier to include it for the 

simulation architecture.  The launch message is sent to the 

interceptor the first time elevation is greater than or equal 

to zero.Like the infrared data processing, this process is 

coded in Matlab; it is attached as Appendix B.  It was 

validated in the infrared data processing section. 

The same assumptions of a non-rotating, spherical earth 

still apply.  The spherical earth assumption affects the 

elevation calculation by means of the site vector computation. 

The assumption is still valid, however, because all elements 

of the simulation are using it. 
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V. INITIAL TRACK GENERATION 

An initial track of the target missile must be 

determined.  For a given time, the track radar will send 

range, azimuth, and elevation to the Battle Manager.  The 

Battle Manager is responsible for determining the position and 

velocity vectors of the target given this information. 

To accomplish this task, three observations of range, 

azimuth, and elevation are needed.  Because an initial track 

must be established as soon as possible, the first three 

observations from the track radar are used in this process. 

To begin, each observation of range, azimuth, and 

elevation is converted into a position vector in the Earth 

Centered Inertial (ECI) coordinate frame.  This initial orbit 

determination problem then becomes one of three position 

vectors and time.  There are two primary methods for this type 

of problem: Gibbs method and Herrick-Gibbs method.  Herrick- 

Gibbs method of initial orbit determination is a variation of 

the Gibbs method.  Both find the velocity vector of the middle 

observation and require three nonzero, coplanar vectors, which 

represent three time-sequential vectors of an orbit.  Gibbs 

method is the more robust method; it works best when the 

vectors are more than a degree apart.  In the simulation 

problem, however, data is processed at close intervals because 

of its critical nature.  As a result, the position vectors are 
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less than a degree apart; this is where Herrick-Gibbs' more 

limited application is useful.  Herrick-Gibbs method works 

best when the position vectors are closely spaced.  The 

following outlines a step-by-step procedure on how this 

process is implemented: 

Step 1; Calculate the position vector of the radar site in ECI 

coordinates, assuming a non-rotating and spherical earth, in 

the same manner as Step 5 of IR Data Processing. 

Step 2: Calculate the range vector of all three observations 

in SEZ coordinates. 

PSEZ 

- pCos(El)Cos(ß) 

pCos(El)Sin(ß) 
pSin(El) 

Step 3: Using the nonrotating, spherical earth assumption, 

transform the range vector of all three observations into ECI 

coordinates. 

pIJK = ROT3(-AE)ROT2(-(90°-<f>gc)) 

Step 4; Calculate the position vector of all three 

observations in ECI coordinates. 

ruK — PUK 
+ rs siteUK 
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Step 5: Use Herrick-Gibbs method of initial orbit 

determination to determine the velocity vector of the second 

observation. 

1. Calculate the changes in time. 

At3l = t3 - ti 

At32 = t3 - t2 

At21   -    t2    "    tl 

2. Calculate the middle velocity vector. 

V2 = -At32 
1     - + ." 

{At2lAt3l    12r,3 
1 -+." 

KAt21At32    I2r2 j 

+ At. 21 
1    .+  " 

KAt32At31    12r3
3 j 

The output is an orbit track of position and velocity at 

the middle observation time.  The actual Matlab code is 

attached as Appendix C; it was validated by inputting test 

data and matching the output with known results.  Initially, 

it was not known if Herrick-Gibbs could handle observations as 

close together as one second or less; tests indicated that 

Herrick-Gibbs could be used with observations 0.0001 seconds 

apart or less, which is more than the simulation needs. 

Herrick-Gibbs method actually increased its accuracy with 

smaller time intervals and angle separations. 
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VI. TRACK UPDATES 

The interceptor missile needs the most current target 

track possible.  As a result, the Battle Manager must update 

the target track at intervals required by the kill vehicle. 

The updated track must then be sent to the kill vehicle. 

When new information, including range, azimuth, and 

elevation, is available from the track radar, the target track 

is updated using an Extended Kaiman Filter.  An Extended 

Kaiman Filter is ideal for the simulation because it estimates 

the current state of the target missile.  There are times, 

however, when new radar data is not available.  This happens 

because the kill vehicle needs updates more often than the 

track radar sends new information.  Because the kill vehicle 

needs up-to-date information, the track must be updated using 

another method.  For these circumstances, the track must be 

updated using another method. 

Inputs for the Extended Kaiman Filter include initial 

position and velocity vectors, an initial covariance matrix, 

and the time change between states.  In addition, range, 

azimuth, and elevation for the second state are required. 

Outputs include position and velocity vectors and a covariance 

matrix.  The Extended Kaiman Filter will be implemented in the 

following manner: 
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Step 1: Propagate the initial state forward from timeic to 

timeK+i using a two-body propagator.  This code is based on 

David A. Vallado's PKEPLER algorithm in Fundamentals of 

Astrodynamics and Applications2. The initial position and 

velocity vectors are propagated through the time of flight to 

determine the current position and velocity vectors. 

Rk,Vk,TOF => RK+I,VK+I 

The code is included as Appendix D. 

Step 2: Use Step 5 of IR Data Processing to calculate the 

nominal observations (range, azimuth, and elevation) of the 

predicted state vector. 

Step 3: Calculate the 6x6 state transition matrix, (|>. 

4 = I + FAt + 0.5 (F2At) 

Where I is the identity matrix (6x6) 

F is a two body partial derivative matrix 

At is the time difference between states 

Step 4: Calculate the predicted covariance matrix, PK+I. 

PK+I = (|>PK<|>
T
 + Q 

Where PK is the initial covariance matrix 

Q is the modeling error 

Step 5: Calculate H, a 3 x 6 matrix.  For this simulation, the 

H matrix is computed numerically.  Each element of the 

predicted position vector is perturbed individually, 
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corresponding to the first three columns.  Perturbed range, 

azimuth, and elevation are then calculated for the 

observation.  The difference between the perturbed and nominal 

values represents the numerator in each H matrix value.  The 

denominator is simply the difference between the perturbed R 

element and its nominal value; this process is called finite 

differencing.  The last three columns of the H matrix are 

zero. 

H 

A/7, Aft Apt 

Arj Arj ArK 

Aazj 

Ae/j 

"^T  

.0..0..0 

.0..0..0 

Step 6: Calculate the Kaiman Gain, a 6 x 3 matrix. 

T T —1 
KK+I = PK+IH K+i [HK+IPK+IH K+i + RK+I] 

Where R is the inverse of the weighting matrix 

Step 7: Calculate the residual, Z. 

7  = 
PActual      PNO min al 

A2Actual ~ ^ZNominal 

~^Actual ~ ^''Nominal 

Step 8: Calculate the new state vector, XNEW and the new 

covariance matrix, PNEW. 

AXK+I  = KK+IZK+I 

Xnew   =   XK+1   +   Ax K+l 
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PNEW =   [PK+I  -  KK+IHK+I] PK+I 

This process has been coded and verified in Matlab; it is 

attached as Appendix E.  Problems can occur in any Kaiman 

Filter when the filter becomes smug, meaning the error is so 

small new observations are being disregarded by the filter. 

This can be fixed by adjusting the modeling error, Q, in the 

filter.  In addition, the initial covariance matrix is 

assumed.  This matrix can have an effect on how fast the 

Kaiman filter converges on a solution. 

For times when no new radar information is available, an 

alternative method is used to update the track.  Inputs 

include position and velocity vectors, a covariance matrix, 

and a change in time; outputs include the new position and 

velocity vectors and a new covariance matrix.  This method is 

implemented in the following steps: 

Step 1: Calculate the 6x6 state transition matrix, (|). 

4> = I + FAt + 0.5 (F2At) 

Where I is the identity matrix (6x6) 

F is a two body partial derivative matrix 

At is the time difference between states 

Step 2: Calculate the new (predicted) covariance matrix,PK+I. 

This is just an estimate, since no new radar measurements are 

available. 
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PK+I  =  4>PK<|)
T
  +  Q 

Where PK is the initial covariance matrix 

Q is the modeling error 

Step 3: Calculate the new (predicted) position and velocity 

state using the two-body propagator of Step 1 of the Kaiman 

filter algorithm. 

This process has been coded and verified in Matlab; it is 

attached as Appendix F; additional battle management code used 

throughout all of the algorithms is attached as Appendix G. 

Because of the small time increments, this process is fairly 

simple and accurate even with the spherical, non-rotating 

earth assumption. 



24 

VII. CONCLUSION 

This paper covered aspects of battle management simulated 

in a ballistic missile defense scenario designed by the Spring 

Semester class of ASE 583.  Topics covered include infrared 

data processing, launch message timing, initial track 

generation, and track updates.  The surface of battle 

management was hardly scratched modeling these four behaviors 

and knowing the path of the target missile with no 

uncertainty; the complexity of an actual battle management 

system is readily apparent.  It is easy to see why an actual 

missile defense system has not yet been successfully 

developed. 
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Appendix A: 

IR Data Processing Code 



> o o o o o 0,0 Q.^Q.^Q,Q-^Q-^&Q.Q-Q.Q.Q.&Q.&Q-Q-Q.&Q.&Q.^&&S-S-9-9-9-9-5-9-9-S-9-9-9-9-S-9-9-9-S-&S-9-9-&-S-9-9-S-9-t: 

S'O'O'O'Ö'O'S'O'OOO'OOOOOOOOOOOOOOO'OOO'OOO'OOOO'öOOOOOOOOOOOOOOOOOO'OOOOOOOO'OO' 

function ir 

Michelle I. Roxburgh 11 May 1999 

This function determines the azimuth and elevation angle of 
the target missile at a predetermined radar site, given 
a nadir angle and a rotation angle from two separate IR 
sensors. 

Input is a vector of width 4. 

Output is a vector of width 2. 

Input: 
Rotationl 
Nadirl 
Rotation2 
Nadir2 

Output: 
AZ 
EL 

Rotation angle from sensor 1 (deg) 
Nadir angle from sensor 1 (deg) 
Rotation angle from sensor 2 (deg) 
Nadir angle from sensor 2 (deg) 

Azimuth from the given radar site (deg) 
Elevation from the given radar site (deg) 

function [OUTPUT] = ir(INPUT); 

format long 

% INPUT = [Rotationl,Nadirl,Rotation2,Nadir2] 

Rotationl = double(INPUT(1,1)*pi/180) ; 
Nadirl = double(INPUT(1,2)*pi/180); 
Rotation2 = double(INPUT(1,3)*pi/180) ; 
Nadir2 = double(INPUT(1,4)*pi/180) ; 

REarth = 6378137.0; 
GST = 0.0; 
F = 0.006694385; 

%******** satellites at GEO 

Sat2 = 42241100.0; 
Lonl = 0.0 * pi/180; 
Lon2 = -35.0 * pi/180; 
DeltaLon = Lon2 - Lonl; 

%******** Radar Site 

Sitlat = 62.0 * pi/180; 
Sitlon = -47.0 * pi/180; 
Sitalt = 5.0; 
LST = GST + Sitlon; 

Sitlat = atan((l - F)*tan(Sitlat)); 



[RS] = Site (Sitlat,LST,Sitalt); 

%******** IR sensor Output 

Ll(l, 
Ll(2, 
Ll(3, 

) = sin(Nadirl) * sin(Rotationl); 
) = sin(Nadirl) * cos(Rotationl); 
)   = cos(Nadirl); 

LI mag = sqrt((Ll(l)A2) + (L1(2)A2) + (L1(3)A2)); 

L2(l, 
L2(2, 
L2(3, 

= sin(Nadir2) * sin(Rotation2); 
= sin(Nadir2) * cos(Rotation2); 
= cos(Nadir2); 

L2_mag = sqrt((L2(l)A2) + (L2(2)A2) + (L2(3)A2)); 

Tempi = sin(-DeltaLon) * Sat2; 
Temp2 = -L2(l) * LI(2) / Ll(l); 
Temp3 = L2(2) * cos(-DeltaLon) + L2(3) * sin(-DeltaLon); 
Range2 = Tempi / (Temp2 + Temp3); 

RTempl(1, 
RTempl(2, 
RTempl(3, 

= Range2 * L2(1); 
= Range2 * L2(2); 
= -Sat2 + Range2 * L2(3); 

RTempl_mag = sqrt((RTempl(1)A2) + (RTempl(2)A2) + (RTempl(3)A2)); 

RTemp2 = R0T2(RTempl, pi/2); 
R = ROT3(RTemp2, -Lon2); 
R_mag = sqrt(R(l)A2 + R(2)A2 + R(3)A2); 

[RHO,AZ,EL] = RAZEL (R,RS,Sitlat, Sitalt, LST) ; 

AZ = double(AZ*180/pi) ; 
EL = double(EL*180/pi) 

% OUTPUT = [AZ,EL] 

OUTPUT = [AZ,EL]; 

return; 



i o o o o o Q.0,0 ttaao^o^aaaaa&aaaaaa^aaaaaaaaaaaaao^o^g. 
j'o'o^o'S'o^'So^o'o'o'o'ooo'o o "5 o o o o o'o o o o "o o "o o o "o o o o o o 

% % 
% function site                                               % 
% % 
% Michelle I. Roxburgh                   11 May 1999           % 

%    This function calculates the position location, given site    % 
% latitude, local sidereal time, and site altitude.  It    % 
% assumes a spherical earth. % 
2. % •s ° 
% Input: % 
% Sitlat - Site latitude (rad) % 
% LST - Local sidereal time (rad) % 
% Sitlon - Site longitude (rad) % 
8- % •6 o 

%    Output: % 
%       RS    - Site position vector - 3 (m) % 
% % 
0.0 o o o Q.Q.O o o Q.O Q.O o o o o Q.O o o o o o Q.ft?.9.S-J&9-9-S'9'S-2-9-&^9'9'&&9'9-9-9-9'S&9-5'3'9-S'9'S-9'9-S'9-S-3'9-S-9-S-9' ^O"6'6'6'6i5t)'6'6'6^>'ot>'o'oi5'o'ot5'6'o'o'o'o'o'o'oooo 00000 o'oooo 000 o oooooo'o o 00000000000000000 o 

function [RS] = Site (Sitlat,LST,Sitalt); 

format long 

%   Define Constants   

REarth = 6378137.0; 

RS(1, 
RS(2, 
RS(3, 

) = (REarth+Sitalt)*cos(Sitlat)*cos(LST); 
) = (REarth+Sitalt)*cos(Sitlat)*sin(LST); 
) = (REarth+Sitalt)*sin(Sitlat); 

return 



3'O'O'O'O'O'O'O'D^'O^ CO o o"o o o o"o"o O "0 "O "O "O o"o O'O'O'O'O'O'O'O O'O'O'O'O'O'O'O'O'O'O^'O^'O'O'O'O'O'O'O'O'O'D'D'O'O'O'OI 

function razel 

Michelle I. Roxburgh 11 May 1999 

This function determines range, azimuth, and elevation, given 
a position vector, a site position vector, site 
site latitude, site altitude, and local sidereal time. 

Input: 
R 
RS 
Sitlat 
Sitalt 
LST 

Position vector (m) 
Site position vector (m) 
Site latitude (rad) 
Site altitude (m) 
Local sidereal time (rad) 

Output: 
RHO 
AZ 
EL 

- Range (m) 
- Azimuth (rad) 
- Elevation (rad) 

^^9-^^&^^a^^^^a&^&^&9-^9-^9,oooaaoaaaaaaaaaoaaaaaaaaaaaaaaaaaaaaaaaaao,aac 
^'O'O'O'O'O'O'O'Ö'O'ÖO'O'O^'OOO'OOOOOOO'O'O'OO'O'O'OOOOOOOOOOOOO'OOOOOOOOOOOOOOOOOOOOOOOO'! 

function [RHO,AZ,EL] = RAZEL (R,RS,Sitlat,Sitalt, LST); 

format long 

% Calculate RHO IJK 

RH0IJK(1, 
RHOIJK(2, 
RHOIJK(3, 

) = double(R(l) - RS(1)) 
) = double(R(2) - RS(2)) 
) = double(R(3) - RS(3)) 

[RHOIJKmag] = MAG (RHOIJK); 

% Rotate RHO to SEZ 

Colat = double(pi/2.0 - Sitlat); 
[Temp] = ROT3(RHOIJK,LST); 
[RHOSEZ] = ROT2(Temp,Colat) ; 
RHOSEZmag = MAG (RHOSEZ); 

% Calculate RHO, AZ, and EL 

RHO = RHOSEZmag; 
AZ = atan2(RHOSEZ(2),-RHOSEZ(1)) ; 
EL = asin(RHOSEZ(3)/RHO); 

if AZ < 0.0 
AZ = AZ + 2.0D0*pi; 

end 

return 



Appendix B: 

Launch Message Timing Code 



Q.Q-Q.Q.Q.Q.Q.Q-Q-Q.Q.Q.Q.Q.9.Q.5-Q.5-9.Q-9.Q.9.Q.Q-Q-Q.Q.Q-Q-5-9-Q-9-Q-5-9-Q-Q-^Q-9-5-Q-^Q-9-9-Q-S-3-5-9-9-Q-Q-9-5-S-9-Q-Q-9.^5-9-9-9-Q- 

%   function launch % 
% % 
%    Michelle I. Roxburgh 11 May 1999 % 
9- 9- 

% This function determines elevation, given a position vector.   % 
% It also accepts the velocity vector, which makes         % 
% integration with Simulink easier. % 
s- ' s. 

%    Input is a vector of width 6.  It includes the target % 
% position vector (3) and the target velocity vector (3).   % 

% Output is elevation.                                       % 
% % 
% Input: % 
%       R - Position vector (m) % 
%       V - Velocity vector (m/s) % 
% % 
% Output: % 
%       El - Elevation (deg) % 

&9-9-9-S-9-S-S-9-9-9-9-9-9-9-2-S-9-9-9-9-S-9-9-&9-9-9-9-99-9-9-9-Q-9-9-99-9-9-9-9-99-9-9-9-9-9-9-S-9-9-9-e-9-9-9-S-9-Q-9-Q-G-Q-Q-9-9-9- 
ooooooooooooooo'o'ooooooooooooooooooooooooooooo'ooooooooo'oooooo'o'5'o'o'oo'o'o'o'o 

function [OUTPUT] = launch (INPUT); 

format long 

R = [INPUT(1,1); 
INPUT(2,1); 
INPUT(3,1)]; 

V = [INPUT(4,1); 
INPUT(5,1); 
INPUT(6,1)]; 

F = 0.006694385; 

LaunchLat = double(40.75*pi/180.0) ; 
LaunchLon = double(-74.l*pi/180.0); 
LaunchAlt = 230 
GST =0.0; 
LST = double (GST + LaunchLon); 

LaunchLat = atan((l - F)*tan(LaunchLat)); 

[RS] = Site (LaunchLat,LST,LaunchAlt); 

% Calculate RHO UK 

RHOIJK(l, 
RHOIJK(2, 
RHOIJK(3, 

) = double(R(l) - RS(1)) 
) = double(R(2) - RS(2)) 
) = double(R(3) - RS(3)) 

[RHOIJKmag] = MAG (RHOIJK); 

% Rotate RHO to SEZ 



Colat = double(pi/2.0 - Sitlat); 
[Temp] = R0T3(RH0IJK, LST) ; 
[RHOSEZ] = ROT2(Temp,Colat); 
RHOSEZmag = MAG (RHOSEZ); 

% Calculate EL 

EL = double(asin(RHOSEZ(3)/RHO)) ; 

EL = double(EL*180/pi); 

OUTPUT = EL; 

return 



Appendix C: 

Initial Track Generation Code 



^&9-9-S-9-9-e-9-9-9-9-9-9-9-S-S-S-9-9-S-9-9-9-S-9-9-9-9-9-9-9-9-9-9-9-9-9-9-&9-9-9-9-9-9-9-9-9-9-9-9-9-9-S-Q-9-9-S-Q-Q-Q-e-9-5-Q-Q-C 
>ooooooooooooooooooo'o"ooooooooooooooooooooooooooooooooooo'oo'oooo*o'o'o'o'o1 

function hgibbs 

Michelle I. Roxburgh 11 May 1999 

This function implements Herrick-Gibbs method of initial 
orbit determination, given three observations of range, 
azimuth, elevation, and time. 

The input is a vector of width 12.  It includes range, 
azimuth, elevation, and time of three observations. 

Output is a vector of width 6.  It includes the position and 
and velocity vectors at the middle observation time. 

% 
% 

Input: 
RHOl 

% AZ1 
% ELI 
% RH02 
% AZ2 
% EL2 
Q. RH03 
Q. 
O AZ3 
% EL3 
% Tl 
Q. 
O T2 
% T3 
% 
% 
% 

Output: 
R2 

% 
Q. 

V2 
O 

9-S-9-S.9-9-9-9-9-9-9-9-9. 
ooooooooooooo 

Range at observation 1 
Azimuth at observation 1 
Elevaton at observation 1 
Range at observation 2 
Azimuth at observation 2 
Elevaton at observation 2 
Range at observation 3 
Azimuth at observation 3 
Elevaton at observation 3 
Time at observation 1 
Time at observation 2 
Time at observation 3 

Position vector at the middle observation time 
Velocity vector at the middle observation time 

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO^OO'0'OOO'OOO^O'O'OO'OO'OO'O'O'O'O'O'O'O'O'Ö'D'D'Ö'O'D^^'D' 

function [OUTPUT] =  HGIBBS (INPUT); 

format long 

% INPUT = [Rangel,AZl,ELl,Tl,...,EL3,T3]; 

RHOl 
AZ1 = 
ELI = 
Tl = 
RH02 
AZ2 = 
EL2 = 
T2 = 
RH03 
AZ3 = 
EL3 = 
T3 = 

F = 
Mu 

= INPUT(1,1); 
■■   INPUT(2,l)*pi/l 
■■   INPUT(3,l)*pi/l 
INPUT(4,1); 
= INPUT(5,1); 

■■  INPUT (6,1) *pi/l 
■■  INPUT(7,l)*pi/l 
INPUT(8,1); 
= INPUT(9,1); 

: INPUT(10,1 
■■   INPUT (11,1 
INPUT(12,1) 

80; 
80; 

80; 
80; 

*pi/ 
*pi/ 

180; 
180; 

0.006694385; 
= double(398600.5 * 1000A3); 



Sitlat = 62.0 * pi/180; 
Sitlon = -47.0 * pi/180; 
Sitalt = 5.0; 

%Sitlat  = atari ((1  -  F)*tan(Sitlat)); 

GST =0.0 
LST = double(GST + Sitlon); 

[Rl] = SiteTrack (Sitlat,LST,Sitalt,RH01,AZ1,ELI) 
[R2] = SiteTrack (Sitlat,LST,Sitalt,RH02,AZ2,EL2) 
[R3] = SiteTrack (Sitlat,LST,Sitalt,RH03,AZ3,EL3) 

[RIMag] = MAG (Rl) 
[R2Mag] = MAG (R2) 
[R3Mag] = MAG (R3) 

% Determine changes in time 

T31 = double(T3 - Tl); 
T32 = double(T3 - T2) ; 
T21 = double(T2 - Tl) ; 

% Calculate V2 

Terml = double(-T32*((1.0/(T21*T31)) + Mu/(12.0*RlMagA3))); 
Term2 = double((T32-T21)*((1.0/(T21*T32)) + Mu/(12.0*R2MagA3) 
Term3 = double(T21*((1.0/(T32*T31)) + Mu/(12.0*R3MagA3))); 

Tempi = double(Terml*Rl) 
Temp2 == double (Term2*R2) 
Temp3 = double(Term3*R3) 

V2 = double(Tempi + Temp2 + Temp3); 

% OUTPUT = [R2,V2] 

OUTPUT = [R21,V2'] 

return 



%o o o o o o o o o o o o o o o o o Q.Q.Q.Q.Q.Q.Q.Q.aQ.Q.aaaaaaaaQ.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q.Q-g.Q.Q.Q.Q.Q.Q.9.Q.^5-^Q-9.s.9.&9-9-9-9- ^^^^^^^^^^O^OO'O'D'D^'O'O'O'O'O'O'O'5'O'O'O'O'O'O'OOOOOOOO'OOOOOOOOO'OOOOO'OO'O'OO'OOOOOOOOOO 

■5 v 

%       function  sitetrack % 
% % 
%    Michelle I. Roxburgh                  11 May 1999 % 
% % 
%    This function determines a position vector, given range % 
%         azimuth, elevation, site latitude, local sidereal % 
%         time, and site altitude. % 
% % 
%    Input: % 
%       Sitlat - Site latitude (rad) % 
%       LST   - Local sidereal time (rad) % 
%       Sitalt - Site altitude (m) % 
%       RHO   - Range (m) % 
%       AZ     - Azimuth (rad) % 
%       EL    - Elevation (rad) % 
9- % -6 o 

%     Output: % 
%       RS    - Site position vector - 3 (m) % 
9- S; ■6 ° 
999.9Q.Q.Q.^Q.a9999999-9-9-9-9-9&&&&9&9&9-5-99-9-&9-&a9-&9Sr9-9-9-2r9-9r9-9-9-9-&^S-&S:&-S:S:SrS:9-9rS;2:9'9-& 

function [R] = SiteTrack (Sitlat,LST,Sitalt,RHO,AZ,EL); 

format long 

[RS] = Site (Sitlat,LST,Sitalt); 

RH0SEZ(1, 
RH0SEZ(2, 
RH0SEZ(3, 

) = double(-RHO*cos(EL)*cos(AZ)); 
) = double(RHO*cos(EL)*sin(AZ)); 
) = double(RHO*sin(EL)); 

Colat = double(pi/2.0 - Sitlat); 

[Temp] = R0T2 (RHOSEZ,-Colat) ; 
[RHOIJK] = R0T3 (Temp,-LST); 

R = double(RHOIJK + RS) ; 

return 



Appendix D: 

Two-Body Propagator (PKEPLER) Code 



% to 
% 
% Input: 
% Rl 
% VI 
Q. 
O TOF 

Q. 
O Output: 
% R2 

o o o o o o o o o Q.0 aaaaaaaaaaaaaaaaaaaaaaaa& 

% % 
%   function pkepler % 
% % 
%     Michelle I. Roxburgh 11 May 1999           % 
% % 
%    This function propagates a position and velocity forward % 

for a specified time. % 

- Position vector - 3 (m) % 
- Velocity vector - 3 (m/s) % 
- Time of flight (s) % 

Q, 
"5 

% 
- Position vector - 3 (m) % 

% V2 - Velocity vector - 3 (m/s) % 
% % 
o o o o o o Q.O o o Q.O o o o o o aaaaaaao,Q.o,aaag.aaaao,o,o,aaQ.aao,aaa 
tl^^^^'6^'8'6'6^f'6'S'6^^?^?^«'6'S^o^^?'6?f'6'S'6^'ooo^'o'o'o,6^^ o o o o o o ot> o o o o o o o o o o o o^ o 

function [R2,V2] = PKepler (Rl,VI,TOF); 

format long 

Mu = double(398600.5 * 1000A3) ; 
J = 0.00108263; 
Re = 6378137.0; 
Limit = 0.015; 

[P,A,Ecc,Inc,Omega0,Argp0,Nu0,Mean0,U0,L0,CapPi0] = ELORB (R1,V1); 

% Determine NBar, OmgDot, ArgDot 

Locall = double(J*(ReA2)/(PA2)) ; 
Local2 = double(1.0 - (1.5*((sin(Inc))A2))); 
Local3 = double(sqrt(1.0-(EccA2))) ; 

NO = double(sqrt(Mu/(AA3))) ; 
NBar = double(NO*(1.0+1.5*Locall*Local2*Local3) ) ; 

OmgDot = double(-1.5*Locall*NBar*cos(Inc)); 
ArgDot = double(1.5*Locall*NBar*(2.0 - 2.5*(sin(Inc))A2)); 

% Take into account circular and equatorial orbits 

if Ecc >= Limit & Inc >= Limit 
Omega = OmegaO + OmgDot*TOF; 
Argp = ArgpO + ArgDot*TOF; 
Mean = MeanO + NBar*TOF; 
U = 'Undefined'; 
L = 'Undefined'; 
CapPi = 'Undefined'; 

end 

if Ecc >= Limit & Inc < Limit 
CapPi = CapPiO + (OmgDot+ArgDot)*TOF; 
Mean = MeanO + NBar*TOF; 



U = 'Undefined'; 
L = 'Undefined'; 
Omega = 'Undefined'; 
Argp ='Undefined'; 

end 

if Ecc < Limit & Inc < Limit 
L = LO + (OmgDot+ArgDot+NBar)*TOF; 
CapPi = 'Undefined'; 
Mean = 'Undefined'; 
U = 'Undefined'; 
Argp = 'Undefined'; 
Omega = 'Undefined'; 

end 

if Ecc < Limit & Inc >= Limit 
Omega = OmegaO + OmgDot*TOF; 
U = UO + (ArgDot + NBar)*TOF; 
L = 'Undefined'; 
CapPi = 'Undefined'; 
Mean = 'Undefined'; 
Argp = 'Undefined'; 

end 

% Determine R and V from updated COE's 

[Nu] = NEWTONR (Ecc,Mean); 

[R2,V2] = RANDV (P,Ecc,Inc,Omega,Argp,Nu,U,L,CapPi); 

return 



o o o o o Q.O Q.O o Q.O o o o o o o o o o QQQQQQ,QQ,gr(x<x<x<XQ,Q,g„Q,Q,g,Q.&QCLQ.Q.QQ.G,Q 
'6^"5'6-6^"6^'6'6^'6'5'6'6'6'6'6'6'ö'6'ao'o^"o'o'o'o'ö'o'o'o'5'o'o'o'o'o'o o o o "o o 0*0 o "o o o o o o o o o o o o x> o o o o o 'S o o o 

% % 
%   function elorb % 

Michelle I. Roxburgh 11 May 1999 % g. 

%    This function converts ECI position and velocity vectors      % 
% into classical orbital elements. % 
9- %. ■8 o 

%    Input: % 
%       R     - Position vector - 3 (m) % 
%       V     - Velocity vector - 3 (m/s) % 
% o 

%     Output: % 
% P - Semi-latus rectum (m) % 
% A - Semi-major axis (m) % 
% Ecc - Eccentricity % 
% Inc - Inclination (rad) % 
% Omega - Longitude of the ascending node (rad) % 
% Argp - Argument of perigee (rad) % 
% Nu - True anomaly (rad) % 
% M - Mean anomaly (rad) % 
% U - Argument of latitude (rad) % 
% L - True longitude (rad) % 
% CapPi - True longitude of perigee (rad) % 
% % 
^^^^^^^^^^^^^^'o'o'o'oo'ooao'o'o'o'o'o'o'ö'o'o'o'o'o'o'o'o'o o'o'o o o o o o o o o o 0*0 o"o o o 00 o 00 o o o o 00 o o 

function [P,A,Ecc,Inc,Omega,Argp,Nu,M,U,L,CapPi] = ELORB (R,V); 

format long 

Mu = double(398600.5 * 1000A3); 
REarth = 6378137.0; 
Small = 0.000001; 
Smallei = 0.015; 

[RMag] = MAG (R) ; 
[VMag] = MAG (V) ; 

HBar = cross(R,V); 
[HMag] = MAG (HBar); 

NBar = cross([0 0 l],HBar); 
[NMag] = MAG (NBar); 

Tempi = double((VMagA2 - Mu/RMag)/Mu); 
Temp2 = double(dot(R,V)/Mu); 
EBar = double(Templ*R - Temp2*V); 
[Ecc] = MAG (EBar); 

SME = double((VMagA2 * 0.5) - Mu/RMag); 
if abs(SME) > Small 

A = double(-Mu/(2.0*SME)); 
else 

A = 'Infinite'; 
end 



P = double(HMagA2/Mu); 
Inc = double(acos(HBar(3)/HMag)); 

TypeOrbit = 'El'; 
if Ecc < Small 

if Inc < Smallei or abs(Inc-pi) < Smallei 
TypeOrbit = ' CE' ; 

else 
TypeOrbit = ' CI' ; 

end 
else 

if Inc < Smallei or abs(Inc-pi) < Smallei 
TypeOrbit = ' EE' ; 

end 
end 

if NMag > Small 
Omega = double(acos(NBar(1)/NMag)); 
if NBar(2) < 0.0 

Omega = double(2.0*pi - Omega); 
end 

else 
Omega = 'Undefined'; 

end 

if TypeOrbit == 'El' 
Argp = double(acos(dot(NBar,EBar)/(NMag*Ecc))); 
if EBar(3,:) < 0.0 

Argp = double(2.0*pi - Argp); 
end 

else 
Argp = 'Undefined'; 

end 

if (TypeOrbit == 'El') | (TypeOrbit == 'EE') 
Nu = double(acos(dot(EBar,R)/(Ecc*RMag))); 
if double(dot(R,V)) < 0.0 

Nu = double(2.0*pi - Nu); 
end 

else 
Nu = 'Undefined'; 

end 

if TypeOrbit == 'CI' 
U = double(acos(dot(NBar*R)/(NMag*RMag))); 
if R(3,:) < 0.0 

U = double(2.0*pi - U) ; 
end 

else 
U = 'Undefined'; 

end 

if Ecc > Smallei & TypeOrbit == 'CE' 
CapPi = double(acos(EBar(1)/Ecc)); 
if EBar(2,:) < 0.0 

CapPi = double(2.0*pi - CapPi); 



end 
else 

CapPi = 'Undefined'; 
end 

if RMag > Small & TypeOrbit == 'CE' 
L = double(acos(R(l)/RMag)); 
if R(2,:) < 0.0 

L = double(2.0*pi - L) ; 
end 

else 
L = 'Undefined'; 

end 

if double(Ecc - 1.0) > Smallei 
F = double(acosh(A-RMag/(A*Ecc))) ; 
M = Ecc*sinh(F) - F; 

else 
if abs(Ecc-l.O) < Smallei 

D = double(sqrt(P)*tan{Nu*0.5)) ; 
M = doublet(1.0/6.0)*(3.0*D + DA3)); 

else 
if Ecc > Smallei 

Temp = double(1.0 + Ecc*cos(Nu)); 
if abs(Temp) < Small 

M = 0.0 
else 

sinE = double(sqrt(1.0 - EccA2)*sin(Nu)/Temp); 
cosE = double((Ecc + cos(Nu))/Temp); 
if abs(sinE) > 1.0 

sinE = sign(1.0,sinE); 
end 
if abs(cosE) > 1.0 

cosE = sign(1.0,cosE); 
end 
E = double(atan2(sinE,cosE)); 
M = double(E - Ecc*sin(E)); 

end 
else 

if TypeOrbit == 'CE' 
M = L; 

else 
M = U; 

end 
end 

end 
if M < 0.0 

M = double(M + 2.0*pi); 
end 

end 

return 



function randv 

Michelle I. Roxburgh 11 May 1999 

This function determines a position and velocity vector, 
given classical orbital elements. 

% 
Q, 
'S 

Input: 
P 

0 Ecc 
% Inc 
'O 

Q. 
O 

% 

Omega 
Argp 
Nu 

Q, 
O Ü 
"5 L 
% 
% 

CapPi 

% 
% 

Output: 
R 

% V 

Semi-latus rectum (m) 
Eccentricity 
Inclination (rad) 
Longitude of the ascending node (rad) 
Argument of perigee (rad) 
True anomaly (rad) 
Argument of latitude (rad) 
True longitude (rad) 
True longitude of perigee (rad) 

Position vector - 3 (m) % 
Velocity vector - 3 (m/s) % 

9-9-9-9-9-S-S-e-S-9-&9-9-3-5-9-5-9-&S-9-9-9-Ö-S-9-S-9-S-Q-9-9-9-e-e-9-9-9-5-e-9-9-9-Q-9-9-9-9-S-e-Q-9-9-Q-Q-S-Q-9-Q-Q-S-Q.Q.9.Q.Q.aa,3.Q. 
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% Michelle I. Roxburgh 
% Function RandV 
% This function determines a position and velocity vector, given classical 
%     orbitial elements. 

function [R,V] = RANDV (P, Ecc, Inc,Omega,Argp,Nu,U,L,CapPi); 

format long 

Small = 0.015; 
Mu = double(398600.5 * 1000A3); 

if Ecc < Small 
if Inc < Small or abs(Inc - pi) < Small 

Argp = 0.0; 
Omega = 0.0; 
Nu = L; 

else 
Argp = 0.0; 
Nu = U; 

end 
else 

if Inc < Small or abs(Inc - pi) < Small 
Argp = CapPi; 
Omega = 0.0; 

end 
end 

Temp = P/(1.0 + Ecc*cos(Nu)); 
RPQW(1, 
RPQW(2, 
RPQW(3, 

= Temp*cos(Nu); 
= Temp*sin(Nu) ; 
= 0.0; 



RPQWmag = sqrt(RPQW(1,:)A2+RPQW(2,:)A2+RPQW(3,:)A2); 

VPQW(1, 
VPQW(2, 
VPQW(3, 

= -sin(Nu)*sqrt(Mu/P) ; 
= (Ecc + cos(Nu))*sqrt(Mu/P); 

) =0.0; 
VPQWmag = sqrt(VPQW(1,:)A2+VPQW(2,:)A2+VPQW(3,:)A2) 

[TempVecl] = ROT3 (RPQW,-Argp); 
[TempVec2] = ROT1 (TempVecl,-Inc); 
[R] = ROT3 (TempVec2,-Omega); 

[TempVec3] = ROT3 (VPQW,-Argp); 
[TempVec4] = ROT1 (TempVec3,-Inc); 
[V] = ROT3 (TempVecl,-Omega); 

return; 



%   function NEWTONR % 

%    Michelle I. Roxburgh 11 May 1999 % 
o. 9- 

%    This function determines true anomaly using eccentricity      % 
% and mean anomaly. % 

% Input: % 
% Ecc - Eccentricity % 
% M  - Mean anomaly (rad)                                 % 
% * 
% Output: % 
% Nu - True anomaly (rad)                                 % 
% * 
^^"6^"6ti'6'6'6'6^^:St>*6t)'ö;5;ö;ö;5'ö'oo'6^^j.g"o'o"o"o'o'D'o'o'o'o'o'o'o ^ ^ ^ ^ ^ ^ ^^ Q ^ ^ ^ Q ^ Q Q Q Q Q^ Q O Q Q 0 t> t> o 

function [Nu] = NEWTONR (Ecc,M); 

format long 

EO = M; 
I = 1; 

El = EO - ((EO - Ecc*sin(E0) - M)/(1.0 - Ecc*cos(EO))); 

while abs(El-EO) >= 0.0000001 & I <= 20 
E0 = El; 
El = E0 - ((E0 - Ecc*sin(E0) - M)/(1.0 - Ecc*cos(E0))); 
1 = 1 + 1; 

end 

sinv = (sqrt(1.0 - EccA2)*sin(El))/(1.0 - Ecc*cos(E0)); 
cosv = (cos(El) - Ecc)/(1.0 - Ecc*cos(El)); 
Nu = atan2(sinv,cosv); 

if Nu < 0.0 
Nu = 2.0*pi + Nu; 

end 

return 



Appendix E: 

Track Updating with New Measurements Code 



function radar 

Michelle I. Roxburgh 11 May 1999 

This function executes an Extended Kaiman Filter. 

Input is a vector of width 46. 

Output is a vector of width 42. 

a Input: 
g. 
o Rinit 
0 Vinit 
Q. 
O P 
% Range 
Q. 
O Azimuth 
% Elevation 
% 
% Output: 
a 
o R 
% V 
a 
o PNew 

Initial position vector - 
Initial velocity vector - 
Covariance matrix (6x6) 
Range (m) 
Azimuth (deg) 
Elevation (deg) 

- Position vector - 3 (m) 
- Velocity vector - 3 (m/s) 
- Covariance matrix (6x6) 

(m) 
(m/s) 

^^?^'6'6'5'6'5%'6'6'6'5'6"6"6'Ö'6'o'S'6'6*6'6'6^'6'S'6'5^'6'ö'6'6'ö'S'6'w«'o^"^"o^^ o o o o o o o ^ o o o o o o o ^ o o o o o 

function [OUTPUT] = radar (INPUT); 

format long 

INPUT = [R(l)...V(3), P(l,l) P(6,6),Range,AZ,EL,DeltaT] 

Rinit(1,1) 
Rinit(2,1) 
Rinit(3,1) 

Vinit(1,1) 
Vinit(2,1) 
Vinit(3,1) 

INPUT(1,1) 
INPUT(2,1) 
INPUT(3,1) 

INPUT(4,1) 
INPUT(5,1) 
INPUT(6,1) 

[INPUT(7:12,1) ' 
INPUT(13:18,1) 
INPUT(19:24,1) 
INPUT(25:30,1) 
INPUT(31:36,1) 
INPUT(37:42,1) 

Obs = [INPUT(43,1); 
double(INPUT(44,l)*pi/180); 
double(INPUT(45,l)*pi/180)]; 

DeltaT = INPUT(46,1); 

Radar (1,1) = 62.0*pi/180; 
Radar (2,1) = -47.0*pi/180; 
Radar (3,1) = 5.0; 



F = 0.006694385; 

Radar(l,1) = atan((l - F) *tan(Radar(1,1) ) ) ; 

LST = Radar(2); 

Noised, 1) = 0.026; 
Noise(2,l) = 0.026*pi/180.0; 
Noise(3,1) = 0.022*pi/180.0; 

% Calculate the Weight Matrix 

R = zeros (3); 
R(l,l) = 1.0/Noised) A2 
R(2,2) = 1.0/Noise{2)A2 
R(3v3) = 1.0/Noise(3) A2 

% Calculate the Predicted State 

[RPredict,VPredict] = PKEPLER (Rinit,Vinit,DeltaT); 

[RS] = SITE (Radar(l) , LST,Radar(3)) ; 

[RHONom,AZNom,ELNom] = RAZEL (RPredict,RS,Radar(1) , Radar(3),LST); 

XPredict(1,1) = RPredict(1,1) 
XPredict(2,1) = RPredict(2,1) 
XPredict(3,1) = RPredict(3,1) 
XPredict(4,1) = VPredict(1,1) 
XPredict(5,1) = VPredict(2,1) 
XPredict(6,1) = VPredict(3,1) 

Z(l,l) = double(Obs(1) - RHONom); 
Z(2,l) = double(Obs(2) - AZNom); 
Z(3,l) = double(Obs(3) - ELNom); 

% Find the PHI Matrix 

[PHIMatrix] = PHI (Rinit,DeltaT); 

% Calculate the Predicted Covariance, assume no Q 

PBar = PHIMatrix*P*PHIMatrix'; 

% Find the H Matrix 

[H] = HMatrix (RPredict,LST,Radar) ; 

% Calculate K 

KMatrix = PBar * H' * inv(H * PBar * H' + R); 

% Calculate DeltaX and the New State Vector 

DeltaXHat = KMatrix*Z; 

XNew = XPredict + DeltaXHat; 



% Calculate the New Covariance Matrix 

PNew = PBar - (KMatrix*H*PBar) ; 

% OUTPUT = [R(l)...V(3),P(1,1) . . .P(6,6) ] 

OUTPUT = [XNew',PNew(l,l:6),PNew(2,1:6),PNew(3,1:6) , PNew(4,1:6) , .. 
PNew(5,1:6),PNew(6,1:6)] ; 

return; 



% % 
%   function PHI % 
% % 
%    Michelle I. Roxburgh                  11 May 1999 % 
9- <i 
"o 15 

%    This function determines the state transition matrix needed   % 
%         needed for the Extended Kaiman Filter. % 
% % 
%    Input: % 
%       R      - Position vector - 3 (m) % 
%       DeltaT  - Time between filtering (s) % 
%     -,               """' % 
%     Output: % 
%       PHIMatrix - State transition matrix (6x6) % 
&■ 9- "o -5 

9-9-9-9-&9-&&S-9-9-&9-9-9-9-5-9-9-2-9-9-9-9-&9-9-9-&-S-S-9-9-9-9-9-9-&9-9-9-9-&S-S-9-9-S-9-S-9-S-9-9-9-9-9-9-9-S-Q-Q-Q-9-0 9-° ° ° ° oooooo'ooooo'ooooooo^'oooooooooo'ooooooooo'ooooooo'oooooooooooooooo'o'o'oo'o'o'o'o'o 

function [PHIMatrix] = PHI (R,DeltaT); 

format long 

% Get the F Matrix 

[F] = FMatrix(R); 

% Do calculations for PHI Matrix 

PHIMatrix = eye(6) + F*DeltaT + (F*F*DeltaTA2)/2.0; 

return 
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8- %. -6 o 

% function  FMatrix                                                                                                                % 
9. 9- 

% Michelle I. Roxburgh                  11 May 1999           % 
9- % 

% This function determines the two-body partial derivative      % 
% matrix needed for the Extended Kaiman Filter.            % 
% % 
% Input:                                                      % 
% R - Position vector - 3 (m)                             % 
9- 9- 

% Output:                                                   % 
% F - Two body partial derivative matrix, F (6 x 6)         % 

function [F] = FMatrix (R); 

format long 

Mu = double(398600.5 * 1000A3); 

[RMag] = MAG (R) ; 

% Set initial F entries to 0 

F = zeros(6); 

% Set nonzero entries of F to their values 

F(l,4) = 1.0 
F(2,5) = 1.0 
F(3,6) = 1.0 

F(4,l) = double((-Mu/RMagA3) + (3.0*R(1)A2)/RMagA5) 
F(5,l) = double(3.0*Mu*R(l}*R(2)/RMagA5) 
F(6,l) = double(3.0*Mu*R(l}*R(3)/RMagA5) 
F(4,2) = double(3.0*Mu*R(l)*R(2)/RMagA5) 
F(5,2) = doublet(-Mu/RMagA3) + (3.0*Mu*R(2)A2)/RMagA5) 
F(6,2) = double(3.0*Mu*R(2)*R(3)/RMagA5) 
F(4,3) = double(3.0*Mu*R(l)*R(3)/RMagA5) 
F(5,3) = double(3.0*Mu*R(2)*R(3)/RMagA5) 
F(6,3) = doublet(-Mu/RMagA3) + (3.0*Mu*R(3)A2)/RMagA5); 

return 



i o o o o o o o o o o o o o o Q.CLO o Q.O o o Q.Q.Q.Q.Q.Q.Q.Q.Q.Q-Q-5-Q.'3.'i9.9-e.9-9-9-Q-Q-9-9-S-9-9-9-9-2-9-9-9-9-B-9-S-9-9-5-9-S-S-S-5-S- 

function HMatrix 

Michelle I. Roxburgh 11 May 1999 

This function determines the H matrix need for the Extended 
Kaiman Filter. 

Input: 
RNom 
LST 
Radar 

Output: 
H 

- Position vector - 3 (m) 
- Local sidereal time (rad) 
- Vector of site latitude, longitude, and altitude 

H Matrix 

function [H] = HMatrix (RNom,LST,Radar); 

format long 

% Calculate Nominal Observation Values 

[RS] = Site (Radar(l),LST,Radar(3)); 
[RHONom,AZNom,ELNom] =RAZEL (RNom, RS, Radar (1) , Radar (3) , LST) ; 

% Calculate values of H matrix entries 

H = zeros (3,6); 

for I = 1:3 
RPert = double(1.005*RNom(I,:)); 
DeltaR = double(0.005*RNom(I,:)); 

if I == 1 
RNomTemp(l,:) = RPert; 
RNomTemp(2,:) = RNom(2, : 
RNomTemp(3,:) = RNom(3,: 

elseif I == 2 
RNomTemp(1,:) = RNom(l,: 
RNomTemp(2,:) = RPert; 
RNomTemp(3,:) =RNom(3,: 

elseif I == 3 
RNomTemp(1, 
RNomTemp(2, 
RNomTemp(3, 

) = RNom(1,: 
) = RNom(2,: 
) = RPert; 

end 

end 
RNomTemp(4,:) = sqrt(RNomTemp(1,:)A2+RNomTemp(2,:)A2+RNomTemp(3,:)A2); 
[RHOPert,AZPert,ELPert] = RAZEL (RNomTemp,RS,Radar(1),Radar(3),LST); 
DeltaRHO = double(RHOPert - RHONom); 
DeltaAZ = double(AZPert - AZNom); 
DeltaEL = double(ELPert - ELNom); 
H(1,I) = double(DeltaRHO/DeltaR); 
H(2,I) = double(DeltaAZ/DeltaR); 
H(3,I) = double(DeltaEL/DeltaR); 



return 



Appendix F: 

Track Updating without 
New Measurements Code 



function propagate 

Michelle I. Roxburgh 11 May 1999 

"6 Input: 
% DeltaT 
0. 
~6 Rinit 
% Vinit 
% P 
% 
"6 Output: 
"6 R 
% V 
% PNew 
% 

This function updates the target state and covariance 
matrix between updated information from the track 
radar. 

Input is a vector of width 43. 

Output is a vector of width 42. 

Time since the last update 
Initial position vector - 3 (m) 
Initial velocity vector - 3 (m/s) 
Covariance matrix (6x6) 

- Position vector - 3 (m) 
- Velocity vector - 3 (m/s) 
- Covariance matrix (6x6) 

^9-9-9-9-S-9-9-9-9-9-9-9-9-9-9-9-9-9-S-5-9-9-9-9-9.Q.Q.9-5-Q.Q.9-9.9.9.9.9.9.9.Q-Q.Q.5.5.Q.5.Q-S.Q-^ 
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function [OUTPUT] = propagate (INPUT); 

format long 

INPUT = [DeltaT,R(l)...V(3),P(1,1)...P(6,6)] 

DeltaT = INPUT(1,1); 

Rinit(1,1) = INPUT(2,1) 
Rinit(2,1) = INPUT(3,1) 
Rinit(3,1) = INPUT(4,1) 

Vinit(1,1) = INPUT(5,1) 
Vinit(2,1) = INPUT(6,1) 
Vinit(3,1) = INPUT(7,1) 

P = [INPUT(8:13,1)'; 
INPUT(14:19,1) 
INPUT(20:25,1) 
INPUT(26:31,1) 
INPUT(32:37,1) 
INPUT(38:43,1)']; 

Radar (1,1) = 62.0*pi/180; 
Radar (2,1) = -47.0*pi/180; 
Radar (3,1) = 5.0; 
F = 0.006694385; 

Radar(1,1) atan ( F)*tan(Radar(1,1))); 



% Find the PHI Matrix 

[PHIMatrix] = PHI • (Rinit,DeltaT) ; 

% Calculate the Predicted Covariance, assume no Q 

PNew = PHIMatrix*P*PHIMatrix'; 

OUTPUT = [XNew',PNew(l,l:6),PNew(2,1:6),PNew(3,1:6),PNew(4,1:6), 
PNew(5,l:6),PNew(6,1:6)] ; 

return; 



Appendix 6: 

Additional Functions 



QQSSQQQQ9SSSSQQQ9Q9QeSSSQQQSQQQSSQQ9SQQQ9S9QQSSQQQ9Q9-Q-Q-QQ.QQQ.Q-Q.9.Q.Q.Q-Q.Q-Q-Q- 
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ä Q 

%        function  R0T1 % 
% % 
%    Michelle I. Roxburgh 11 May 1999           % 
9- 9- o t> 

%    This function rotates about the X axis, given a vector and    % 
%         an angle. % 
9- 9- 
o -6 

%    Input: % 
%       Vectorl  - Input vector of width 3 % 
%       RotAngle - Rotation angle (rad) % 
% % 
%    Output: % 
%       Vector2  - Output vector of width 3 % 
% S- 

o o o o "o o "o o o o o "o o "o o "o o o o "o "o o'o"o"o"o"o'o"o o'o'olä'o'o'o'oli'o'o'o'otS'o'o'o'o'o'o'o'o'o'o'o^'o'o'ö'o'o'o'ö'o'ö'ö'o'o'otj'o 

function Vector2 = R0T1(Vectorl, RotAngle); 

M_l_2 = [1, 0, 0; 
0, cos(RotAngle), sin(RotAngle); 
0, -sin(RotAngle), cos(RotAngle)]; 

Vector2 = M_l_2 * Vectorl; 

return 
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% % 
%   function R0T2 % 
% % 
%    Michelle I. Roxburgh 11 May 1999           % 
% % 
%    This function rotates about the Y axis, given a vector and    % 
%         an angle. % 
% % 
%    Input: % 
%       Vectorl  - Input vector of width 3 % 
%       RotAngle - Rotation angle (rad) % 
% % 
%     Output: % 
%       Vector2  - Output vector of width 3 % 
% % 
??'6'8'6,S??^??'6'3^?'S^'6'S^'o'o'o,o^'o'o'oo'o'8co^'3 o o o o o o o o o o"5 o o^ o o o o o o^ o o o o o o o o o o 

function Vector2 = R0T2(Vectorl, RotAngle); 

M_l_2 = [cos(RotAngle) , 0, -sin(RotAngle); 
0, 1, 0; 
sin(RotAngle), 0, cos(RotAngle)] ; 

Vector2 = M_l_2 * Vectorl; 

return 



o o o o o o o o o o o o o x> o o o o o o o o o o o o o o o o o o^^^^^^^^^'c'o'o'o'0'0'0'0'0'0'0'0'0'0'0'0'5'0'0'5'5'5'5'5'6'6'5'6^ 
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% function  ROT3                                                                                                                              % 
o % 

% Michelle I. Roxburgh                  11 May 1999           % 
9- 9- o 'S 

% This function rotates about the Z axis, given a vector and    % 
% an angle.                                            % 

Input vector of width 3 
Rotation angle (rad) 

Output vector of width 3 % 
9- 9- 
o ~6 
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function Vector2 = R0T3(Vector1, RotAngle); 

M_l_2 = [cos(RotAngle), sin(RotAngle), 0; 
-sin(RotAngle), cos(RotAngle) , 0; 
0, 0, 1]; 

Vector2 = M_l_2 * Vectorl; 

return 

% 
% 

Input: 
Vectorl 

% 
% 

RotAngle 

% 
% 

Output: 
Vector2 
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%       function mag % 
% % 
%    Michelle I. Roxburgh 11 May 1999 % 
9- 9- "o "6 

% This function determines the magnitude of a vector (3). % 
%       ■ % 

% Input: % 
%       Vector  - Vector of width 3 % 
% % 
% Output: % 
%       Magnitude - Magnitude of the vector % 
9- 0- 
■o -o 

9-&&9-9-99-S-9-2-9-9-9-S-9-2-9-9-9-9-&9&&9-9-&99S-9-&9&&9&99-5-9-9-5-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-S-9-5-9-000 

OO'OOOOOOO'OO'OO'OO^OOO'OOOOOOO'OO'O'OO'OOOOOOOOOOOOOOOOOOO'OOOOOOOOOO^^^'O'O'Q'D'O'5'O 

function [Magnitude] = MAG (Vector); 

format long 

Magnitude = sqrt(Vector(1)A2+Vector(2)A2+Vector(3)A2); 

return 


